By using inherently conducting polymers, we introduce new shape memory functionality for stimuli-responsive polymers. The shape memory process is unique in that it utilizes electrochemical control of the polymer redox state to conceal, and temporarily store, preformed nanoscale surface patterns, which can later be recalled. Unlike classical thermoset and thermoplastic shape memory polymers, the electrochemical control does not completely perturb the low entropy state of the deformed polymer chains, thus enabling the concept of reversible transition between the permanent and temporary shapes. This is demonstrated using electrochemical-atomic force microscopy/quartz crystal microbalance to characterize the modulation of nanoscale deformations in electroactive polybithiophene films. Experimental results reveal that cation/solvent exchange with the electrolyte and its effect on reconfiguration of the film structure is the mechanism behind the process. In addition to incorporating conductive properties into shape-memory polymers, the ability to reversibly modulate surface nanopatterns in a liquid environment is also of significant interest in tribology and biointerface applications.