Background and objective: Regeneration of periodontal tissues by EMD remains a major challenge because a number of modifying factors are as yet unknown. The effects of EMD seem to be mediated, at least in part, by bone morphogenetic protein-2 (BMP-2). This in vitro study was performed to examine whether the effects of EMD on BMP-2 activity are modulated by inflammatory and/or biomechanical signals.
Material and methods: Periodontal ligament cells were seeded on BioFlex(®) plates and exposed to EMD under normal, inflammatory or biomechanical loading conditions for 1 and 6 d. In order to mimic proinflammatory or biomechanical loading conditions in vitro, cells were stimulated with interleukin-1β (IL-1β), which is increased at inflamed periodontal sites, and cyclic tensile strain of various magnitudes, respectively. The synthesis of BMP-2, its receptors (BMPR-1A, BMPR-1B and BMPR-2) and its inhibitors (follistatin, matrix gla protein and noggin) were analyzed using real-time RT-PCR and ELISA.
Results: In EMD-treated cells, BMP-2 synthesis was increased significantly at 1 d. EMD also induced the expression of all BMP receptors, and of the BMP inhibitors follistatin and noggin. In general, IL-1β and biomechanical loading neither down-regulated BMP-2 nor up-regulated BMP inhibitors in EMD-stimulated cells. However, IL-1β and biomechanical loading, when applied for a longer time period, caused a down-regulation of EMD-induced BMP receptors.
Conclusion: EMD induces not only BMP-2, but also its receptors and inhibitors, in PDL cells. IL-1β and biomechanical forces may counteract the beneficial effects of EMD on BMP-2 activity via the down-regulation of BMP receptors.
© 2011 John Wiley & Sons A/S.