Hexamethyldisiloxane-based nanoprobes for (1) H MRI oximetry

NMR Biomed. 2011 Dec;24(10):1226-34. doi: 10.1002/nbm.1678. Epub 2011 Mar 15.

Abstract

Quantitative in vivo oximetry has been reported using (19) F MRI in conjunction with reporter molecules, such as perfluorocarbons, for tissue oxygenation (pO(2) ). Recently, hexamethyldisiloxane (HMDSO) has been proposed as a promising alternative reporter molecule for (1) H MRI-based measurement of pO(2) . To aid biocompatibility for potential systemic administration, we prepared various nanoemulsion formulations using a wide range of HMDSO volume fractions and HMDSO to surfactant ratios. Calibration curves (R(1) versus pO(2) ) for all emulsion formulations were found to be linear and similar to neat HMDSO for low surfactant concentrations (<10% v/v). A small temperature dependence in the calibration curves was observed, similar to previous reports on neat HMDSO, and was characterized to be approximately 1 Torr/ °C under hypoxic conditions. To demonstrate application in vivo, 100 µL of this nanoemulsion was administered to healthy rat thigh muscle (Fisher 344, n=6). Dynamic changes in mean thigh tissue pO(2) were measured using the PISTOL (proton imaging of siloxanes to map tissue oxygenation levels) technique in response to oxygen challenge. Changing the inhaled gas to oxygen for 30 min increased the mean pO(2) significantly (p<0.001) from 39 ± 7 to 275 ± 27 Torr. When the breathing gas was switched back to air, the tissue pO(2) decreased to a mean value of 45 ± 6 Torr, not significantly different from baseline (p>0.05), in 25 min. A first-order exponential fit to this part of the pO(2) data (i.e. after oxygen challenge) yielded an oxygen consumption-related kinetic parameter k=0.21 ± 0.04 min(-1) . These results demonstrate the feasibility of using HMDSO nanoemulsions as nanoprobes of pO(2) and their utility to assess oxygen dynamics in vivo, further developing quantitative (1) H MRI oximetry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calibration
  • Cell Death
  • Emulsions
  • Filtration
  • Kinetics
  • Magnetic Resonance Imaging / methods*
  • Mice
  • Molecular Probes / chemistry*
  • NIH 3T3 Cells
  • Nanoparticles / chemistry*
  • Oximetry / methods*
  • Oxygen / metabolism
  • Oxygen Consumption
  • Particle Size
  • Protons*
  • Rats
  • Rats, Inbred F344
  • Siloxanes / chemistry*
  • Temperature

Substances

  • Emulsions
  • Molecular Probes
  • Protons
  • Siloxanes
  • hexamethyldisiloxane
  • Oxygen