Transplanted murine bone marrow (BM) progenitor cells recruit to the injured pancreas and induce endogenous beta cell proliferation to improve islet function. To enrich for analogous human progenitor cell types that stimulate islet regeneration, we purified human BM based on high-aldehyde dehydrogenase activity (ALDH(hi)), an enzymatic function conserved in hematopoietic, endothelial, and mesenchymal progenitor lineages. We investigated the contributions of ALDH(hi) mixed progenitor cells or culture-expanded, ALDH-purified multipotent stromal cell (MSC) subsets to activate endogenous programs for islet regeneration after transplantation into streptozotocin-treated NOD/SCID mice. Intravenous injection of uncultured BM ALDH(hi) cells improved systemic hyperglycemia and augmented insulin secretion by increasing islet size and vascularization, without increasing total islet number. Augmented proliferation within regenerated endogenous islets and associated vascular endothelium indicated the induction of islet-specific proliferative and pro-angiogenic programs. Although cultured MSC from independent human BM samples showed variable capacity to improve islet function, and prolonged expansion diminished hyperglycemic recovery, transplantation of ALDH-purified regenerative MSC reduced hyperglycemia and augmented total beta cell mass by stimulating the formation of small beta cell clusters associated with the ductal epithelium, without evidence of increased islet vascularization or Ngn3(+) endocrine precursor activation. Thus, endogenous islet recovery after progenitor cell transplantation can occur via distinct regenerative mechanisms modulated by subtypes of progenitor cells administered. Further, understanding of how these islet regenerative and pro-angiogenic programs are activated by specific progenitor subsets may provide new approaches for combination cellular therapies to combat diabetes.