A fundamental question in brain development is how precursor cells generate a diverse group of neural progeny in an ordered manner. Drosophila neuroblasts sequentially express the transcription factors Hunchback (Hb), Krüppel (Kr), Pdm1/Pdm2 (Pdm) and Castor (Cas). Hb is necessary and sufficient to specify early-born temporal identity and, thus, Hb downregulation is essential for specification of later-born progeny. Here, we show that distal antenna (dan) and distal antenna-related (danr), encoding pipsqueak motif DNA-binding domain protein family members, are detected in all neuroblasts during the Hb-to-Cas expression window. Dan and Danr are required for timely downregulation of Hb in neuroblasts and for limiting the number of early-born neurons. Dan and Danr function independently of Seven-up (Svp), an orphan nuclear receptor known to repress Hb expression in neuroblasts, because Dan, Danr and Svp do not regulate each other and dan danr svp triple mutants have increased early-born neurons compared with either dan danr or svp mutants. Interestingly, misexpression of Hb can induce Dan and Svp expression in neuroblasts, suggesting that Hb might activate a negative feedback loop to limit its own expression. We conclude that Dan/Danr and Svp act in parallel pathways to limit Hb expression and allow neuroblasts to transition from making early-born neurons to late-born neurons at the proper time.