Allogeneic hematopoietic stem cell transplantation is the treatment of choice for severe primary immunodeficiencies (PIDs). For patients lacking an HLA-identical donor, gene therapy is an attractive therapeutic option. Approaches based on insertion of a functional gene by using viral vectors have provided proof of concept for the ability of gene therapy to cure PIDs. However, leukemic transformation as a result of insertional mutagenesis has been observed, prompting development of novel approaches based on introduction of DNA double-strand breaks into the endogenous locus to achieve gene correction, or into a safe genomic location ("safe harbor"). Homing endonucleases and zinc finger nucleases are target-specific endonucleases that induce site-specific DNA double-strand breaks, facilitating homologous recombination around their target sites to achieve gene correction or gene insertion into safe harbors. An alternative approach to achieve site-specific insertion of functional genes is based on transposons, DNA elements that spontaneously translocate from a specific chromosomal location to another. These novel tools may lead to efficient and safer strategies to achieve gene therapy for PIDs and other disorders.
Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.