Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice

Hum Gene Ther. 2011 Nov;22(11):1379-88. doi: 10.1089/hum.2011.020. Epub 2011 May 25.

Abstract

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence-optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signaling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain-extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction-induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Animals
  • Calcium-Binding Proteins / metabolism*
  • Dependovirus / genetics*
  • Dystrophin / genetics*
  • Dystrophin / metabolism
  • Dystrophin-Associated Proteins / metabolism*
  • Genetic Therapy
  • Genetic Vectors
  • HEK293 Cells
  • Humans
  • Membrane Proteins / metabolism*
  • Mice
  • Mice, Inbred mdx
  • Muscle Proteins / metabolism*
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / pathology
  • Muscular Dystrophy, Animal / genetics
  • Muscular Dystrophy, Animal / pathology
  • Muscular Dystrophy, Animal / therapy*
  • Muscular Dystrophy, Duchenne / genetics
  • Muscular Dystrophy, Duchenne / pathology
  • Muscular Dystrophy, Duchenne / therapy*

Substances

  • Calcium-Binding Proteins
  • Dystrophin
  • Dystrophin-Associated Proteins
  • Membrane Proteins
  • Muscle Proteins
  • dystrobrevin
  • syntrophin alpha1