Signal evolution and infarction risk for apparent diffusion coefficient lesions in acute ischemic stroke are both time- and perfusion-dependent

Stroke. 2011 May;42(5):1276-81. doi: 10.1161/STROKEAHA.110.610501. Epub 2011 Mar 31.

Abstract

Background and purpose: This study aimed to examine the temporal relationship between tissue perfusion and apparent diffusion coefficient (ADC) changes within 6 hours of ischemic stroke onset and how different reperfusion patterns may affect tissue outcome in ADC lesions.

Methods: Thirty-one participants were sequentially imaged at 3 hours, 6 hours, and 1 month post-stroke. Three regions of interest (ROIs) were defined within initial ADC lesions: ROI (1)reperf_3hour hyperacute reperfusion (within 3 hours), ROI (2)reperf_6hour acute reperfusion (3 to 6 hours), and ROI (3)nonreperf no reperfusion (by 6 hours). For each ROI, changes in ADC (ΔADC) from 3 to 6 hours and risks of infarction were examined.

Results: The magnitude of initial ADC reduction was similar in all 3 ROIs (P=0.51). ΔADC was strongly associated with reperfusion (P<0.0001) but not with initial ADC reduction (P=0.83). ΔADC in ROI (1)reperf_3hour and ROI (2)reperf_6hour was significantly larger than that of ROI (3)nonreperf (P<0.05). Positive ΔADC was obtained from 3 to 6 hours in ROI (1)reperf_3hour that had restored perfusion before 3 hours, demonstrating a temporal delay between reperfusion and ADC changes. Risks of infarction were significantly higher in ROI (3)nonreperf than those in ROI (1)reperf_3hour and ROI (2)reperf_6hour.

Conclusions: Improvement in ADC did not occur coincidently with reperfusion but showed a temporal delay. Regions with similar initial ADC reductions at 3 hours had different evolution of ADC and infarction risks depending on when or if tissue reperfused. These findings provide a physiological basis for the observation that a single ADC measurement at a fixed time after stroke onset may not accurately predict tissue outcome.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Cerebral Infarction / epidemiology*
  • Cerebral Infarction / physiopathology
  • Cerebrovascular Circulation / physiology
  • Diffusion Magnetic Resonance Imaging*
  • Female
  • Humans
  • Magnetic Resonance Angiography*
  • Male
  • Middle Aged
  • Prognosis
  • Prospective Studies
  • Reperfusion
  • Retrospective Studies
  • Risk Factors
  • Stroke / complications*
  • Stroke / pathology*
  • Stroke / physiopathology
  • Time Factors