Introduction: This study was designed to quantify the role of the pericellular matrix (PCM) in chondrocyte apoptosis using chondrons, which are a cartilage functional unit including a chondrocyte and its associated PCM.
Methods: Chondrocytes and chondrons were enzymatically isolated from human articular cartilage and exposed to monosodium iodoacetate (MIA) and staurosporine for apoptosis induction. Chondrons were defined by the presence of type VI collagen, a basic component of the PCM. Apoptosis of chondrocytes and chondrons was measured with annexin V binding by flow cytometry and verified with terminal dUTP nick end-labeling staining. In a separate experiment, isolated chondrocytes were treated with soluble type VI collagen, before or after apoptosis induction with MIA, and cell death was measured by the activity of LDH and terminal dUTP nick end-labeling staining.
Results: Chondrocytes treated with MIA incurred 27% cell death, compared with 12% in chondrons. On treating with MIA, 9% of chondrocytes underwent apoptosis, compared with only 1.6% of chondrons. Similarly, staurosporine induced 13% apoptosis in chondrocytes, whereas it was 3% in chondrons. Preincubation of type VI collagen effectively prevented chondrocytes from MIA-induced cell death. After apoptosis was induced with MIA, however, treatment with type VI collagen failed to rescue chondrocytes from death.
Conclusion: The PCM, a native microenvironment of chondrocytes, protects chondrocytes from apoptosis. Type VI collagen is a functional component of the PCM that contributes to the survival of chondrocytes.