After surgery, wound healing begins with a well-orchestrated integration of several cytokines, cells, and extracellular matrix. Some studies show an involvement of stem cells in wound healing. However, little is known about the mechanism that leads to the migration of stem cells. Wound fluid (WF) with its cytokines may play an important role. We investigated in the present study the in vitro effects of WF on adipose-derived stem cells (ADSCs). Survival, proliferation, structural integrity, changes in the multidifferentiation potential, and surface markers (cluster of differentiation [CD] 105, CD73, CD90) of ADSCs after cultivation with WF was analyzed. Further, the migration effect of WF on ADSCs was evaluated. The proliferation rate and the migration potential of ADSCs were enhanced significantly by cultivation with WF. There was also a change in the quantity of surface markers after cultivation with WF. In conclusion, in vitro expansion of stem cells with WF proved possible. WF and its cytokines could represent one primary reason for the migration of stem cells toward the wound. Future investigation is warranted to clarify the significance of the shift in surface markers.