To study the effects of low- and high-linear energy transfer (LET) radiation on break locations within a chromosome, we exposed human epithelial cells in vitro to (137)Cs γ rays at both low and high dose rates, secondary neutrons at a low dose rate, and 600 MeV/u iron ions at a high dose rate. Breakpoints were identified using multicolor banding in situ hybridization (mBAND), which paints chromosome 3 in 23 different colored bands. For all four radiation scenarios, breakpoint distributions were found to be different from the predicted distribution based on band width. Detailed analysis of chromosome fragment ends involved in inter- or intrachromosomal exchanges revealed that the distributions of fragment ends participating in interchromosomal exchanges were similar between the two low-LET radiation dose rates and between the two high-LET radiation types, but the distributions were less similar between low- and high-LET radiations. For fragment ends participating in intrachromosomal exchanges, the distributions for all four radiation scenarios were similar, with clusters of breaks found in three regions. Analysis of the locations of the two fragment ends in chromosome 3 that joined to form an intrachromosomal exchange demonstrated that two breaks with a greater genomic separation can be more likely to rejoin than two closer breaks, indicating that chromatin folding can play an important role in the rejoining of chromosome breaks. Comparison of the breakpoint distributions to the distributions of genes indicated that the gene-rich regions do not necessarily contain more breaks. In general, breakpoint distributions depend on whether a chromosome fragment joins with another fragment in the same chromosome or with a fragment from a different chromosome.