Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.