Thrombopoietin (TPO) receptor agonists lacking sequence homology to TPO were designed by grafting a known peptide sequence into the hinge and/or kappa constant regions of a human anti-anthrax antibody. Some of these proteins were equipotent to TPO in stimulating cMpl-r activity in vitro and in increasing platelet levels in vivo. ALXN4100TPO (4100TPO), the best agonist in this series with a K(d) of 30 nM for cMpl-r, exhibited potent activity as a radiation countermeasure in CD2F1 mice exposed to lethal total-body radiation from a cobalt-60 γ-ray source. 4100TPO (2 mg/kg, s.c.) administered once either 24 h before or 6 h after TBI showed superior protection to five daily doses given before or after TBI. Prophylactic administration (69 to 94% survival) was superior to therapeutic schedules (60% survival). 4100TPO conferred a significant survival benefit (P < 0.01) when administered 4 days before or even 12 h after exposure and across a dose range of 0.1 to 8 mg/kg. The dose reduction factors (DRFs) with a single dose of 1 mg/kg 4100TPO 24 h before or 12 h after TBI were 1.32 and 1.11, respectively (P < 0.0001). Furthermore, 4100TPO increased bone marrow cellularity and megakaryocytic development and accelerated multi-lineage hematopoietic recovery in irradiated mice, demonstrating the potential of 4100TPO as both a protector and a mitigator in the event of a radiological incident.