In addition to the known preventive effects of environmental enrichment (EE) on drug addiction, we have recently shown that EE can also have "curative" effects and eliminate addiction-related behaviors in mice and rats. In the present study, using Fos immunohistochemistry, we investigated brain regions involved in the elimination of cocaine conditioned place preference (CPP) produced by a 30-day exposure to EE. A first group of mice was conditioned to cocaine in the CPP apparatus, a second group that served as control received cocaine in a cage different from the CPP apparatus and a third control group received only saline injections. At the end of conditioning, we kept mice abstinent in the animal facility, housing them in standard environments (SE) or EE for 30 days and then we tested them for expression of CPP. SE, but not EE mice, conditioned to cocaine showed long-lasting preferences for the cocaine-paired compartment. Expression of CPP was paralleled by significant increases in the expression of Fos in the anterior cingulate cortex, the lateral caudate putamen, the shell of the nucleus accumbens, the dentate gyrus of the hippocampus, the basolateral and central nuclei of amygdala, the bed nucleus of the stria terminalis, and the ventral tegmental area. In contrast, EE mice showed levels of expression of FOS similar to control groups. These results demonstrate that EE can eliminate context-induced cocaine seeking and that this effect appears associated with a general reduction in the activation of several brain regions implicated in relapse.
Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.