Autoantibody-mediated IL-6-dependent endothelin-1 elevation underlies pathogenesis in a mouse model of preeclampsia

J Immunol. 2011 May 15;186(10):6024-34. doi: 10.4049/jimmunol.1004026. Epub 2011 Apr 11.

Abstract

Preeclampsia (PE) is a life-threatening hypertensive disorder of pregnancy. Elevated circulating endothelin-1 (ET-1) is associated with the disease. However the molecular basis of increased ET-1 production and its role in PE are unknown. This study aimed to investigate the causative factors, pathological role of elevated ET-1 production in PE, and the underlying mechanisms. In this study, we found that IgG from women with PE, in contrast to IgG from normotensive pregnant women, induced preproET-1 mRNA expression via angiotensin II type 1 receptor activation in kidneys and placentas in pregnant mice. The ET-A receptor-specific antagonist BQ123 significantly attenuated autoantibody-induced hypertension, proteinuria, and renal damage in pregnant mice, demonstrating that autoantibody-induced ET-1 production contributes to pathophysiology. Mechanistically, we discovered that IL-6 functioned downstream of TNF-α signaling, contributing to increased ET-1 production in pregnant mice. IL-6 blockade inhibited preeclamptic features in autoantibody-injected pregnant mice. Extending the data to human studies, we found that IL-6 was a key cytokine underlying ET-1 induction mediated by IgG from women with PE in human placental villous explants and that endothelial cells are a key source of ET-1. Overall, we provide human and mouse studies showing that angiotensin II type I receptor-agonistic autoantibody is a novel causative factor responsible for elevated ET-1 production and that increased TNF-α/IL-6 signaling is a key mechanism underlying increased ET-1 production and subsequent maternal features. Significantly, our findings revealed novel factors and signaling cascades involved in ET-1 production, subsequent disease symptom development, and possible therapeutic intervention in the management of PE.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autoantibodies / immunology*
  • Disease Models, Animal
  • Endothelin-1 / biosynthesis
  • Endothelin-1 / blood
  • Endothelin-1 / genetics
  • Endothelin-1 / metabolism*
  • Female
  • Humans
  • Immunoglobulin G / immunology
  • Interleukin-6 / genetics
  • Interleukin-6 / immunology
  • Interleukin-6 / metabolism*
  • Kidney / metabolism
  • Mice
  • Placenta / metabolism
  • Pre-Eclampsia / immunology*
  • Pre-Eclampsia / metabolism*
  • Pregnancy
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Receptor, Angiotensin, Type 1 / immunology*
  • Receptor, Angiotensin, Type 1 / metabolism*
  • Signal Transduction
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Autoantibodies
  • Endothelin-1
  • Immunoglobulin G
  • Interleukin-6
  • RNA, Messenger
  • Receptor, Angiotensin, Type 1
  • Tumor Necrosis Factor-alpha