Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter

J Biol Chem. 2011 Jun 3;286(22):19693-701. doi: 10.1074/jbc.M110.202085. Epub 2011 Apr 12.

Abstract

Virulent enteric pathogens have developed several systems that maintain intracellular pH to survive extreme acidic conditions. One such mechanism is the exchange of arginine (Arg(+)) from the extracellular region with its intracellular decarboxylated form, agmatine (Agm(2+)). The net result of this process is the export of a virtual proton from the cytoplasm per antiport cycle. Crystal structures of the arginine/agmatine antiporter from Escherichia coli, AdiC, have been recently resolved in both the apo and Arg(+)-bound outward-facing conformations, which permit us to assess for the first time the time-resolved mechanisms of interactions that enable the specific antiporter functionality of AdiC. Using data from ∼1 μs of molecular dynamics simulations, we show that the protonation of Glu-208 selectively causes the dissociation and release of Agm(2+), but not Arg(+), to the cell exterior. The impact of Glu-208 protonation is transmitted to the substrate binding pocket via the reorientation of Ile-205 carbonyl group at the irregular portion of transmembrane (TM) helix 6. This effect, which takes place only in the subunits where Agm(2+) is released, invites attention to the functional role of the unwound portion of TM helices (TM6 Trp-202-Glu-208 in AdiC) in facilitating substrate translocation, reminiscent of the behavior observed in structurally similar Na(+)-coupled transporters.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agmatine / chemistry*
  • Agmatine / metabolism
  • Amino Acid Transport Systems / chemistry*
  • Amino Acid Transport Systems / genetics
  • Amino Acid Transport Systems / metabolism
  • Antiporters / chemistry*
  • Antiporters / genetics
  • Antiporters / metabolism
  • Binding Sites
  • Biological Transport / physiology
  • Crystallography, X-Ray
  • Escherichia coli / chemistry*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Glutamic Acid / chemistry*
  • Glutamic Acid / genetics
  • Glutamic Acid / metabolism
  • Models, Molecular*
  • Protein Structure, Secondary

Substances

  • AdiC protein, E coli
  • Amino Acid Transport Systems
  • Antiporters
  • Escherichia coli Proteins
  • Glutamic Acid
  • Agmatine