2D-LC analysis of BRP 3 erythropoietin N-glycosylation using anion exchange fractionation and hydrophilic interaction UPLC reveals long poly-N-acetyl lactosamine extensions

Anal Chem. 2011 Jun 1;83(11):4154-62. doi: 10.1021/ac200406z. Epub 2011 May 2.

Abstract

Post-translational modifications, in particular glycosylation, represent critical structural attributes that govern both the pharmacodynamic and pharmacokinetic properties of therapeutic glycoproteins. To guarantee safety and efficacy of recombinant therapeutics, characterization of glycosylation present is a regulatory requirement. In the current paper, we applied a multidimensional strategy comprising a shallow anion exchange gradient in the first dimension, followed by analysis using the recently introduced 1.7 μm HILIC phase in the second dimension for the comprehensive separation of complex N-glycans present on the European Biological Reference Preparation (BRP) 3 erythropoietin standard. Tetra-antennary glycans with multiple sialic acids and poly-N-acetyl lactosamine extensions were the most abundant oligosaccharides present on the molecule. Site-specific glycan analysis was performed to examine microheterogeneity. Tetra-antennary glycans with up to four sialic acids and up to five poly-N-acetyl lactosamine extensions were observed at asparagine 24 and 83, while biantennary glycans were the major structures at asparagine 38. The combined AEC x UPLC HILIC allows for the rapid and comprehensive analysis of complex N-glycosylation present on therapeutic glycoproteins, such as BRP3 erythropoietin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Asparagine / chemistry
  • Chromatography, High Pressure Liquid / methods*
  • Chromatography, High Pressure Liquid / standards
  • Chromatography, Ion Exchange / methods
  • Chromatography, Ion Exchange / standards
  • Erythropoietin / chemistry*
  • Erythropoietin / metabolism
  • Erythropoietin / standards
  • Glycosylation
  • Hydrophobic and Hydrophilic Interactions
  • Mass Spectrometry / methods
  • Molecular Sequence Data
  • Peptide Mapping
  • Polysaccharides / analysis*
  • Sialic Acids / analysis

Substances

  • Polysaccharides
  • Sialic Acids
  • Erythropoietin
  • Asparagine
  • poly-N-acetyllactosamine