To interact with its visual environment, an organism needs to perceive objects in both space and time. High temporal resolution is hence important to the fitness of diurnally active animals, not least highly active aerial species such as birds. However, temporal resolution, as assessed by flicker fusion frequency (FFF; the stimulus frequency at which a flickering light stimulus can no longer be resolved and appears continuous) or critical flicker fusion frequency (CFF; the highest flicker fusion frequency at any light intensity) has rarely been assessed in birds. In order to further our understanding of temporal resolution as a function of light intensity in birds we used behavioural experiments with domestic chickens (Gallus gallus domesticus) from an old game breed 'Gammalsvensk dvärghöna' (which is morphologically and behaviourally similar to the wildtype ancestor, the red jungle fowl, G. gallus), to generate an 'Intensity/FFF curve' (I/FFF curve) across full spectrum light intensities ranging from 0.2 to 2812 cd m⁻². The I/FFF curve is double-branched, resembling that of other chordates with a duplex retina of both rods and cones. Assuming that the branches represent rod and cone mediated responses respectively, the break point between them places the transition between scotopic and photopic vision at between 0.8 and 1.9 cd m⁻². Average FFF ranged from 19.8 Hz at the lowest light intensity to a CFF 87.0 Hz at 1375 cd m⁻². FFF dropped slightly at the highest light intensity. There was some individual variation with certain birds displaying CFFs of 90-100 Hz. The FFF values demonstrated by this non-selected breed appear to be considerably higher than other behaviourally derived FFF values for similar stimuli reported for white and brown commercial laying hens, indicating that the domestication process might have influenced temporal resolution in chicken.
Copyright © 2011 Elsevier Ltd. All rights reserved.