Mutations in the ClC-7/Ostm1 ion transporter lead to osteopetrosis and lysosomal storage disease. Its lysosomal localization hitherto precluded detailed functional characterization. Using a mutated ClC-7 that reaches the plasma membrane, we now show that both the aminoterminus and transmembrane span of the Ostm1 β-subunit are required for ClC-7 Cl(-)/H(+)-exchange, whereas the Ostm1 transmembrane domain suffices for its ClC-7-dependent trafficking to lysosomes. ClC-7/Ostm1 currents were strongly outwardly rectifying owing to slow gating of ion exchange, which itself displays an intrinsically almost linear voltage dependence. Reversal potentials of tail currents revealed a 2Cl(-)/1H(+)-exchange stoichiometry. Several disease-causing CLCN7 mutations accelerated gating. Such mutations cluster to the second cytosolic cystathionine-β-synthase domain and potential contact sites at the transmembrane segment. Our work suggests that gating underlies the rectification of all endosomal/lysosomal CLCs and extends the concept of voltage gating beyond channels to ion exchangers.