The somatosensory cortex of many rodents, lagomorphs, and marsupials contains distinct cytoarchitectonic features named "barrels" that reflect the pattern of large facial whiskers on the snout. Barrels are composed of clustered thalamocortical afferents relaying sensory information from one whisker surrounded by cell-dense walls or "barrels" in layer 4 of the cortex. In many ways, barrels are a simple and relatively accessible canonical cortical column, making them a common model system for the examination of cortical development and function. Despite their experimental accessibility and popularity, we still lack a basic understanding of how and why barrels form in the first place. In this review, we will examine what is known about mechanisms of barrel development, focusing specifically on the recent literature using the molecular-genetic power of mice as a model system for examining brain development.
© 2011 New York Academy of Sciences.