Telomere length and variation in telomere biology genes in individuals with osteosarcoma

Int J Mol Epidemiol Genet. 2011 Jan 1;2(1):19-29. Epub 2010 Nov 23.

Abstract

Osteosarcoma, the most common primary bone tumor, occurs most frequently in adolescents. Chromosomal aneuploidy is common in osteosarcoma cells, suggesting underlying chromosomal instability. Telomeres, located at chromosome ends, are essential for genomic stability; several studies have suggested that germline telomere length (TL) is associated with cancer risk. We hypothesized that TL and/or common genetic variation in telomere biology genes may be associated with risk of osteosarcoma. We investigated TL in peripheral blood DNA and 713 single nucleotide polymorphisms (SNPs) from 39 telomere biology genes in 98 osteosarcoma cases and 69 orthopedic controls. For the genotyping component, we added 1363 controls from the Prostate, Lung, Colorectal, and Ovarian Cancer ScreeningTrial. Short TL was not associated with osteosarcoma risk overall (OR 1.39, P=0.67), although there was a statistically significant association in females (OR 4.35, 95% Cl 1.20-15.74, P=0.03). Genotype analyses identified seven SNPs in TERF1 significantly associated with osteosarcoma risk after Bonferroni correction by gene. These SNPs were highly linked and associated with a reduced risk of osteosarcoma (OR 0.48-0.53, P=0.0001-0.0006). We also investigated associations between TL and telomere gene SNPs in osteosarcoma cases and orthopedic controls. Several SNPs were associated with TL prior to Bonferroni correction; one SNP in NOLA2 and one in MEN1 were marginally non-significant after correction (P(adj)=0.057 and 0.066, respectively). This pilot-study suggests that females with short telomeres may be at increased risk of osteosarcoma, and that SNPs in TERF1 are inversely associated with osteosarcoma risk.

Keywords: Osteosarcoma; epidemiology; single nucleotide polymorphism; telomere; telomere length.