Conductance of single cobalt chalcogenide cluster junctions

J Am Chem Soc. 2011 Jun 8;133(22):8455-7. doi: 10.1021/ja201334s. Epub 2011 May 16.

Abstract

Understanding the electrical properties of semiconducting quantum dot devices have been limited due to the variability of their size/composition and the chemistry of ligand/electrode binding. Furthermore, to probe their electrical conduction properties and its dependence on ligand/electrode binding, measurements must be carried out at the single dot/cluster level. Herein we report scanning tunneling microscope based break junction measurements of cobalt chalcogenide clusters with Te, Se and S to probe the conductance properties. Our measured conductance trends show that the Co-Te based clusters have the highest conductance while the Co-S clusters the lowest. These trends are in very good agreement with cyclic voltammetry measurements of the first oxidation potentials and with density functional theory calculations of their HOMO-LUMO gaps.