The sleep-wake cycle is characterized by complex interactions among the central nervous, the endocrine and the immune systems. Continuous 24-h wakefulness prevents sleep-associated hormone regulation resulting in impaired pro-inflammatory cytokine production. Importantly, cytokines and hormones also modulate the complement system, which in turn regulates several adaptive immune responses. However, it is unknown whether sleep affects the activation and the immunoregulatory properties of the complement system. Here, we determined whether the 24-h sleep-wake cycle has an impact on: (i) the levels of circulating complement factors; and (ii) TLR4-mediated IL-12 production from human IFN-γ primed monocytes in the presence or absence of C5a receptor signaling. For this purpose, we analyzed the blood and blood-derived monocytes of 13 healthy donors during a regular sleep-wake cycle in comparison to 24 h of continuous wakefulness. We found decreased plasma levels of C3 and C4 during nighttime hours that were not affected by sleep. In contrast, sleep was associated with increased complement activation as reflected by elevated C3a plasma levels during nighttime sleep. Sleep deprivation prevented such activation. At the cellular level, C5a negatively regulated TLR4-mediated IL-12p40 and p70 production from human monocytes. Importantly, this regulatory effect of C5a on IL-12p70 production was effective only during daytime hours. Thus, similar to hormones, some complement factors and immunoregulatory properties of C5a are influenced by sleep and the circadian rhythm. Our findings that continuous wakefulness has a negative impact on complement activation may provide a rationale for the immunosupportive functions of sleep.
Copyright © 2011 Elsevier Inc. All rights reserved.