An inverse virtual screening in silico approach has been applied to natural bioactive molecules to screen their efficacy against proteins involved in cancer processes, with the aim of directing future experimental assays. Docking studies were performed on a panel of 126 protein targets extracted from the Protein Data Bank, to analyze their possible interactions with a small library of 43 bioactive compounds. Analysis of the molecular docking results was performed through the use of tables containing energy data organized in a matrix. The application of this approach may facilitate the prediction of the activity of unknown ligands for known targets involved in the development of cancer and could be applied to other models based on different libraries of ligands and different panels of targets.