Structure-activity relationship of 2-hydroxy-2-aryl-2,3-dihydro-imidazo[1,2-a]pyrimidinium salts and 2N-substituted 4(5)-aryl-2-amino-1H-imidazoles as inhibitors of biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa

Bioorg Med Chem. 2011 Jun 1;19(11):3462-73. doi: 10.1016/j.bmc.2011.04.026. Epub 2011 Apr 19.

Abstract

A library of 80 1-substituted 2-hydroxy-2-aryl-2,3-dihydro-imidazo[1,2-a]pyrimidinium salts and 54 2N-substituted 4(5)-aryl-2-amino-1H-imidazoles was synthesized and tested for the antagonistic effect against biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa. The nature of the substituent at the 1-position of the salts was found to have a major effect on their biofilm inhibitory activity. Salts with an intermediate length n-alkyl or cyclo-alkyl chain (C7-C10) substituted at the 1-position in general prevented the biofilm formation of both species at low micromolar concentrations, while salts with a shorter n-alkyl or cyclo-alkyl chain (C1-C5) or longer n-alkyl chain (C11-C14) were much less potent. Salts with a long cyclo-alkyl chain however were found to be strong biofilm inhibitors. Furthermore, we demonstrated the biofilm inhibitory potential of salts with certain aromatic substituents at the 1-position, such as piperonyl or 3-methoxyphenetyl. The activity of the 2-aminomidazoles was found to be dependent on the nature of the 2N-substituent. Compounds with a n-butyl, iso-butyl, n-pentyl, cyclo-pentyl or n-hexyl chain at the 2N-position have an improved activity as compared to their unsubstituted counterparts, whereas compounds with shorter 2N-alkyl chains do have a reduced activity and compounds with longer 2N-alkyl chains do have an effect that is dependent on the nature of the substitution pattern of the 4(5)-phenyl ring. Finally, we demonstrated that introduction of a 3-methoxyphenethyl or piperonyl group at the 2N-position of the imidazoles could also result in an enhanced biofilm inhibition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology
  • Biofilms / drug effects
  • Imidazoles / chemical synthesis
  • Imidazoles / chemistry*
  • Imidazoles / pharmacology
  • Microbial Sensitivity Tests
  • Pseudomonas aeruginosa / drug effects*
  • Pyrimidines / chemical synthesis
  • Pyrimidines / chemistry*
  • Pyrimidines / pharmacology
  • Salmonella typhimurium / drug effects*
  • Salts / chemistry
  • Structure-Activity Relationship

Substances

  • Anti-Bacterial Agents
  • Imidazoles
  • Pyrimidines
  • Salts