Doxorubicin is a widely used chemotherapeutic agent; however, its clinical uses are limited due to its cardiotoxicity associated with an induction of oxidative stress. This study was aimed to investigate the protective effect of hesperetin against doxorubicin-induced cardiotoxicity in rats. Doxorubicin was administered at the dosage of 4 mg/kg bw/week, ip for a period of 5 consecutive weeks. Hesperetin was administered at the dosages of 25, 50 and 100 mg/kg bw, po by gavage for 5 consecutive days in a week for 5 weeks. The animals were killed 1 week after the last injection of doxorubicin. Hesperetin at the doses of 50 and 100 mg/kg bw significantly reduced MDA and increased GSH levels in the doxorubicin-treated animals. Further, hesperetin significantly reduced doxorubicin-induced DNA damage as well as apoptosis at 25, 50, and 100 mg/kg bw as evident from the comet and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays, respectively. Thus, hesperetin ameliorated doxorubicin-induced cardiotoxicity by reducing oxidative stress, abnormal cellular morphology and DNA damage in rat. Moreover, nuclear factor-kappa B, p38, and caspase-3 play a role in the hesperetin-mediated protection against doxorubicin-induced cardiotoxicity. This study indicates the protective effect of hesperetin against doxorubicin-induced cardiotoxicity.