Histophilus somni is a prevalent cause of pneumonia and septicemia in cattle. Yet evidence for protection against pneumonia by current vaccines is controversial. We have identified a new H. somni virulence factor, IbpA. Previous studies implicated three likely protective subunits or domains in IbpA (A3, A5, and DR2), which were expressed as recombinant GST fusion proteins and purified for systemic vaccination of calves. After two subcutaneous immunizations, calves were challenged intrabronchially with virulent H. somni strain 2336 and clinical signs were monitored for four days before necropsy. Serum samples were collected throughout. At necropsy, the area of gross pneumonia was estimated, bronchial lavage fluid was collected, lesions were cultured and tissue samples were fixed for histopathology. Results showed that calves immunized with IbpA DR2 had a statistically lower percentage of lung with gross lesions than controls, fewer histologic abnormalities in affected areas and no H. somni isolated from residual pneumonic lesions. Calves immunized with the control GST vaccine, IbpA3 or IbpA5 had larger H. somni positive pneumonic lesions. ELISA results for serum antibodies showed that calves immunized with the IbpA DR2 antigen had high IgG1 and IgG2 and lowest IgE responses to the immunizing antigen. Specific IgG responses were also high in the bronchial lavage fluid. High specific serum IgE responses were previously shown to be associated with more severe pneumonia, but high IgG specific anti-IbpA DR2 responses seem to be critically related to protection. Since the IbpA DR2 Fic motif has been shown to cause bovine alveolar cells to retract, we tested the neutralizing ability of pooled serum from the IbpA DR2 immunized group. This pooled serum reduced cytotoxicity by 75-80%, suggesting that the protection was due to antibody neutralization of IbpA cytotoxicity, at least in part. Therefore, IbpA DR2 appears to be an important protective antigen of H. somni. The study shows, for the first time, that immunization with a purified Fic protein protects against disease in a natural host.
Copyright © 2011 Elsevier Ltd. All rights reserved.