Because human adrenocortical cells from different adrenal disorders exhibit pathologically altered corticosteroid synthesis, and free radical mechanisms may induce pathological changes in the activities of corticosteroid biosynthetic enzymes (cytochrome P-450), we examined the effect of an antioxidant, silibinin, on basal and ACTH-stimulated secretion of several corticosteroids in isolated adrenal cells from an aldosterone-producing adenoma, atrophied adrenal tissues surrounding the adenoma, and hyperplastic adrenals from Cushing's syndrome. In the presence of a high concentration (100 mumol/l) of silibinin, variably diminished secretion of basal aldosterone, corticosterone, cortisol, 18-OH-corticosterone and 11-deoxycorticosterone was found. In contrast, the addition of 0.01 mumol silibinin/l, which failed to produce a clear effect on basal corticosteroid secretion, resulted in a potentiation of ACTH-stimulated secretion of several corticosteroids in the adenomatous and hyperplastic adrenocortical cells. These results suggest that the dose-dependent dual effect of silibinin on corticosteroid secretion may be attributed to corresponding changes in the activities of cytochrome P-450 enzymes, and that stimulation of ACTH-induced corticosteroidogenesis by silibinin is presumably due to the antioxidant property of the drug.