Background: Menopause is associated with increased adiposity, especially increased deposition of intra-abdominal (IA) adipose tissue (AT). This differs from common or 'dietary' obesity, i.e., obesity apparently due to environmentally stimulated overeating, in which IAAT and subcutaneous (S) AT increase in similar proportions. The effect of menopause on adiposity is thought to be due to the decreased secretion of ovarian estrogens. Ovariectomy in rats and other animals is a commonly used model of menopause. It is well known that ovariectomy increases adiposity and that this can be reversed by estradiol treatment, but whether ovariectomy selectively increases IAAT has not been measured directly. Therefore, we used micro-computed tomography (microCT) to investigate this question in both chow-fed and dietary-obese rats.
Methods: Ovariectomized, ovariectomized and estradiol treated, and sham-operated (intact) rats were fed chow or chow plus Ensure (Abbott Nutrition; n = 7/group). Total (T) AT, IAAT and SAT were measured periodically by microCT. Regional distribution of AT was expressed as IAAT as a percentage of TAT (%IAAT). Excesses in these measures were calculated with respect to chow-fed intact rats to control for normal maturational changes. Chemical analysis of fat was done in chow-fed intact and ovariectomized rats at study end. Data were analyzed by t-tests and planned comparisons.
Results: Body mass, TAT, total fat mass, fat-free body mass, and %IAAT all increased in chow-fed intact rats during the 41 d study. In chow-fed rats, ovariectomy increased excess body mass, TAT, fat mass, fat-free body mass, and SAT, but had little effect on IAAT, in chow-fed rats, leading to a decrease in %IAAT. Ensure feeding markedly increased SAT, IAAT and TAT and did not significantly affect %IAAT. Ovariectomy had similar effects in Ensure-fed rats as in chow-fed rats, although less statistically reliable. Estradiol treatment prevented all the effects of ovariectomy.
Conclusions: Both ovariectomy in rats and menopause are associated with increased TAT. After ovariectomy, fat is preferentially deposited as SAT and lean body mass increases, whereas after menopause fat is preferentially deposited as IAAT and lean body mass decreases. These opposite effects of ovariectomy and menopause on regional AT distribution and lean body mass indicate that ovariectomy in rats is not a homologous model of menopause-associated changes in body composition that should be used with great caution in investigations of adiposity-related diseases.