Biomaterials that have the ability to augment angiogenesis are highly sought-after for applications in regenerative medicine, particularly for revascularization of ischemic and infarcted tissue. We evaluated the culture of human circulating angiogenic cells (CAC) on collagen type I-based matrices, and compared this to traditional selective-adhesion cultures on fibronectin. Culture on a collagen matrix supported the proliferation of CD133(+) and CD34(+)CD133(+) CACs. When subjected to serum starvation, the matrix conferred a resistance to cell death for CD34(+) and CD133(+) progenitors and increased phosphorylation of Akt. After 4days of culture, phenotypically enriched populations of endothelial cells (CD31(+)CD144(+)) and progenitor cells (CD34(+)CD133(+)) emerged. Culture on matrix upregulated the phosphorylation and activation of ERK1/2 pathway members, and matrix-cultured cells also had an enhanced functional capacity for adhesion and invasion. These functional improvements were abrogated when cultured in the presence of ERK inhibitors. The formation of vessel-like structures in an angiogenesis assay was augmented with matrix-cultured cells, which were also more likely to physically associate with such structures compared to CACs taken from culture on fibronectin. In vivo, treatment with matrix-cultured cells increased the size and density of arterioles, and was superior at restoring perfusion in a mouse model of hindlimb ischemia, compared to fibronectin-cultured cell treatment. This work suggests that a collagen-based matrix, as a novel substrate for CAC culture, possesses the ability to enrich endothelial and angiogenic populations and lead to clinically relevant functional enhancements.
Copyright © 2011 Elsevier Ltd. All rights reserved.