The effects of prostaglandin E2 (PGE2) were examined in a murine macrophage cell line (BAC1.2F5) that was completely dependent on colony-stimulating factor-1 (CSF-1) for both growth and survival. The addition of PGE2 to cultures of BAC1.2F5 cells resulted in the inhibition of CSF-1-induced [3H]thymidine incorporation and cell proliferation. The inhibitory effects of PGE2 were mimicked by the addition of dibutyryl-cyclic AMP, and the effectiveness of PGE2 was markedly potentiated by 1-methyl-3-isobutylxanthine, a potent inhibitor of cyclic nucleotide phosphodiesterase activity. PGE2 caused a 10-fold elevation of the intracellular cyclic AMP concentration, whereas CSF-1 neither increased cyclic AMP levels nor attenuated the rise in cyclic AMP promoted by PGE2. However, CSF-1 may indirectly regulate cyclic AMP levels since in the absence of CSF-1, BAC1.2F5 cells actively synthesized PGE2, whereas PGE2 production was abruptly terminated by the addition of CSF-1. In BAC1.2F5 cells, PGE2 increases the intracellular cyclic AMP concentration, thereby blocking cell proliferation, but does not down-regulate the CSF-1 receptor or abrogate the functions of CSF-1 necessary for cell survival.