Knowledge on below-ground plant distributions is almost lacking to date, despite the fact that such information would be very valuable in understanding below-ground competition and species-specific interactions, processes that are expected to shape community structure. Methods available so far for below-ground species determination have drawbacks that we tried to challenge. Some methods make use of differences in the chemical composition between species, but this is highly variable upon environmental factors. DNA-based techniques - far less dependent on chemical composition - such as polymerase chain reaction on internal transcribed spacer (ITS) primers can so far only determine presence-absence of a species in a mixed root sample. Here, we present a quantitative DNA-based technique that allows investigation of relative species abundances in experimental mixed root samples. We used quantitative real-time polymerase chain reaction (PCR) on species-specific markers obtained from intersimple sequence repeat (ISSR) analyses in root samples. This molecular technique is novel in the field of root ecology and its development overcame three challenges: (i) determination of species-specific DNA fragments, (ii) development and optimization of the real time PCR protocol, (iii) designing a data treatment method based on a modified delta-delta-cycle threshold (CT) analysis. The method gained robustness from using relative DNA abundances in species mixtures rather than absolute concentration readings. This requires accurate multispecies reference series as a calibration. Test samples with different known biomass ratios of all species showed proof of concept of this method. The pro's and contra's of this method are discussed in the light of its contribution to advancing ecological research on below-ground plant-plant interactions.
© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.