The European Union's REACH regulation has further highlighted the lack of ecotoxicological data for substances in the marketplace. The mandates under REACH (registration, evaluation, authorization, and restriction of chemicals) to produce data and minimize testing on vertebrates present an impetus for advanced hazard assessment techniques using read-across. Research in our group has recently focused on probabilistic ecotoxicological hazard assessment approaches using chemical toxicity distributions (CTDs). Using available data for chemicals with similar modes of action or within a chemical class may allow for selection of a screening point value (SPV) for development of environmental safety values, based on a probabilistic distribution of toxicity values for a specific endpoint in an ecological receptor. Ecotoxicity data for acetylcholinesterase inhibitors and surfactants in Daphnia magna and Pimephales promelas were gathered from several data sources, including the U.S. Environmental Protection Agency's ECOTOX and Pesticides Ecotoxicity databases, the peer-reviewed literature, and the Human and Environmental Risk Assessment (HERA) project. Chemical toxicity distributions were subsequently developed, and the first and fifth centiles were used as SPVs for the development of screening-predicted no-effect concentrations (sPNECs). The first and fifth centiles of these distributions were divided by an assessment factor of 1,000, as recommended by REACH guidance. Use of screening values created using these techniques could support the processes of data dossier development and environmental exposure assessment, allowing for rigorous prioritization in testing and monitoring to fill data gaps.
Copyright © 2011 SETAC.