Melanocortins, adrenocorticotropic hormone (ACTH) and α-, β-, and γ-melanocyte-stimulating hormone (MSH) are produced in the placenta and secreted into embryos/fetuses. ACTH concentrations are higher in fetal plasma than in maternal plasma and peak at mid-gestation in rats, whereas ACTH production starts in the anterior lobe of the fetal pituitary at later stages. Melanocortin receptors (MC1-5R), receptors for ACTH and α-, β- and γ-MSH, are expressed in various adult organs. The specific function of these receptors has been well examined in the hypothalamic-pituitary-adrenocortical (HPA) axis and the HPA axis-like network in the skin, and anti-inflammatory effects for white blood cells have also been investigated. MC2R and/or MC5R are also expressed in the testis, lung, kidney, adrenal, liver, pancreas, brain and blood cells at different stages in mouse and rat embryos/fetuses. Melanocortins in embryos and fetuses promote maturation of the HPA axis and also contribute to the development of lung, testis, brain and blood cells. Recently, a unique ACTH function was revealed in fetuses: placental ACTH, which is secreted by the maternal leukemia inhibitory factor (LIF), and induces LIF secretion from fetal nucleated red blood cells. Finally, the maternal LIF-placental ACTH-fetal LIF signal relay regulates the LIF level and promotes neurogenesis in fetuses, which suggests that ACTH acts as a signal transducer or effector for fetal development in the maternal-fetal signal pathway.
© 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.