Membrane proteomic signatures of karyotypically normal and abnormal human embryonic stem cell lines and derivatives

Proteomics. 2011 Jun;11(12):2515-27. doi: 10.1002/pmic.201000032. Epub 2011 May 20.

Abstract

Cultured human embryonic stem cells (hESCs) and derived derivatives contain heterogeneous cell populations with varying degrees of differentiation and karyotypic stability. The inability to isolate homogenous population presents a challenge toward cell-based applications and therapies. A proteomics approach was utilized to discover novel membrane proteins able to distinguish between the hESC lines BG01, WA09, and abBG02 (trisomy 12, 14, 17 and an extra copy of the X chromosome), along with WA09-derived human neural progenitor (hNP) cells. Membrane protein signatures were developed using sucrose-gradient isolation, 1-D gel electrophoresis followed by in-gel digestion and analysis by reverse phase chromatography coupled to ion trap-FT-ICR. At a ≤1.0% false discovery rate, 1918 proteins were identified; 775 were annotated as membrane proteins and 720 predicted to contain transmembrane spanning regions. Flow cytometry was used to validate cell surface expression of selected proteins. Junctional adhesion molecule 1 expression was shared by BG01, BG02 and abBG02 hESC lines. Dysferlin expression was specific to the WA09 hESC line and not the derived neural or mesenchymal progenitors. Ciliary neurotrophic factor receptor distinguished WA09-derived human neural progenitor cells from the parent hESC population, and WA09-derived mesenchymal progenitor cells. This study expands the current membrane protein data set for hESCs.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cell Culture Techniques
  • Cell Differentiation
  • Cell Line
  • Chromatography, Reverse-Phase
  • Chromosome Duplication / genetics
  • Electrophoresis, Polyacrylamide Gel
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism*
  • Flow Cytometry
  • Gene Expression
  • Gene Expression Profiling
  • High-Throughput Screening Assays
  • Humans
  • Karyotyping
  • Membrane Proteins* / genetics
  • Membrane Proteins* / metabolism
  • Mesenchymal Stem Cells / cytology
  • Mesenchymal Stem Cells / metabolism*
  • Neural Stem Cells / cytology
  • Neural Stem Cells / metabolism*
  • Peptide Fragments / analysis*
  • Proteomics / methods
  • Spectroscopy, Fourier Transform Infrared
  • Trisomy / genetics
  • Trypsin / metabolism

Substances

  • Membrane Proteins
  • Peptide Fragments
  • Trypsin