Single-molecule magnets (SMMs) are compounds that, below a blocking temperature, exhibit stable magnetization purely of molecular origin, and not caused by long-range ordering of magnetic moments in the bulk. They thus show promise for applications such as data storage of ultra-high density. The stability of the magnetization increases with increasing ground-state spin and magnetic anisotropy. Transition-metal SMMs typically possess high-spin ground states, but insufficient magnetic anisotropies. Lanthanide SMMs exhibit large magnetic anisotropies, but building high-spin ground states is difficult because they tend to form ionic bonds that limit magnetic exchange coupling. In contrast, the significant covalent bonding and large spin-orbit contributions associated with uranium are particularly attractive for the development of improved SMMs. Here we report a delocalized arene-bridged diuranium SMM. This study demonstrates that arene-bridged polyuranium clusters can exhibit SMM behaviour without relying on the superexchange coupling of spins. This approach may lead to increased blocking temperatures.