Synthesis of highly ordered mesoporous alumina thin films and their framework crystallization to γ-alumina phase

Dalton Trans. 2011 Nov 7;40(41):10851-6. doi: 10.1039/c1dt10166h. Epub 2011 May 23.

Abstract

Here we report the preparation of highly ordered mesoporous alumina films existing both as P6(3)/mmc and Fm-3m mesostructures by using triblock copolymer Pluronic P123 as the structure-directing agent. 2D grazing-incidence small-angle X-ray scattering (GI-SAXS) completely proves the existence of two different mesopore structures (i.e., [001]-oriented P6(3)/mmc and [111]-oriented Fm-3m symmetries). After calcination at 1000 °C, the amorphous alumina framework is successfully converted to γ-alumina crystals. During the crystallization process, large uniaxial shrinkage occurs along the direction perpendicular to the substrate with the retention of horizontal mesoscale periodicity, thereby resulting in formation of partially vertical mesoporosity in the film. Through detailed electron microscopic study, we discuss the formation mechanism for the vertical mesoporosity upon calcination. The obtained mesoporous γ-alumina film shows high thermal stability up to 1000 °C, which is highly useful in wide research areas such as catalyst supports and separators.