Donor-substituted diphenylacetylene derivatives act as electron donors and acceptors

J Org Chem. 2011 Jul 15;76(14):5628-35. doi: 10.1021/jo2005022. Epub 2011 Jun 13.

Abstract

Despite the predominant electron donor character of p-phenylenediamine, our studies on extended p-phenylenediamine derivatives show that they can not only be chemically oxidized, giving well-known Wurster-type radical cations, but also be chemically reduced, giving radical anions. Making use of EPR/ENDOR spectroscopy and supported by DFT calculations, we were able to reveal the extent of π-electron delocalization in the paramagnetic species and to shed light onto the geometry and bond lengths. While for the radical anions spin was found to be mostly delocalized into the π-system, the radical cations can be described as essentially N-centered. Furthermore, we performed electrochemical characterizations using cyclic voltammetry to gain insight into the thermodynamics of the redox processes. The photophysical properties of the parent extended p-phenylenediamine were investigated by absorption, emission, and excitation spectroscopy. The fluorescence quantum yield and the excited-state lifetime of the neutral precursors in hexane and acetonitrile were determined to establish elementary differences originating from solvent effects.