Background: The Shc isoforms is known to mediate immune responses and has been indicated as a negative regulator of autoimmunity and lymphocyte activation. We aimed to evaluate the immune-regulatory role of Shc in rat bone marrow-derived DCs in the maturation process triggered by LPS.
Results: We found that, in response to LPS, expression of Shc proteins was induced and that neutralization of Shc inhibited the LPS-induced transient phosphorylation of p52Shc on pTyr239/240 in DCs of Lewis (LEW; RT1(l)) rats. Moreover, the significantly enhanced expression of IL-10 and the surface level of costimulatory molecule CD80, as well as suppressed expression of IL-6 and IL-12 in the Shc-silenced DCs were also observed. Similar IκB phosphorylation occurred in Shc-silenced DCs primed by LPS, indicating Shc is not associated with NF-κB pathway. We further demonstrate that Shc blockade on LPS-treated DCs results in significant increase of the overall STAT3 phosphorylation and the relative levels of phospho-STAT3 in the nuclear fraction. STAT3 activation by LPS with or without Shc blockade was totally abolished by SU6656, a selective Src family kinases inhibitor, underscoring the critical role of Src-mediated activation.
Conclusions: We conclude that Shc blockade in LPS-primed DC leads to the development of tolerogenic DC via Src-dependent STAT3 activation and that adaptor protein Shc might play a pivotal role in mediating immunogenic and tolerogenic properties of DCs.