Hutchinson-Gilford progeria syndrome, cardiovascular disease and oxidative stress

Front Biosci (Schol Ed). 2011 Jun 1;3(4):1285-97. doi: 10.2741/226.

Abstract

Hutchinson-Gilford Progeria Syndrome (HGPS), a rare human disease characterized by premature aging, is mainly caused by the abnormal accumulation of progerin, a mutant form of the mammalian nuclear envelope component lamin A. HGPS patients exhibit vascular alterations and die at an average age of 13 years, predominantly from myocardial infarction or stroke. Animal models of HGPS have been a valuable tool in the study of the pathological processes implicated in the origin of this disease and its associated cardiovascular alterations. Some of the molecular mechanisms of HGPS might be relevant to the process of normal aging, since progerin is detected in cells from normal elderly humans. Conversely, processes linked to normal aging, such as the increase in oxidative stress, might be relevant to the pathogenic mechanisms of HGPS. In this review, we discuss recent advances in the understanding of the molecular mechanisms underlying the cardiovascular alterations associated with HGPS, the potential role of oxidative stress, and therapeutic approaches for the treatment of this devastating disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / physiology*
  • Alternative Splicing
  • Animals
  • Cardiovascular Diseases / physiopathology*
  • Cholesterol / biosynthesis
  • Diphosphonates / therapeutic use
  • Genetic Therapy / methods*
  • Humans
  • Lamin Type A / genetics
  • Membrane Proteins / genetics
  • Metalloendopeptidases / genetics
  • Mice
  • Mice, Knockout
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Oligonucleotides / therapeutic use
  • Oxidative Stress / physiology*
  • Progeria / drug therapy
  • Progeria / physiopathology*
  • Protein Precursors / genetics
  • Protein Precursors / metabolism*
  • Terpenes / metabolism

Substances

  • Diphosphonates
  • LMNA protein, human
  • Lamin Type A
  • Membrane Proteins
  • Nuclear Proteins
  • Oligonucleotides
  • Protein Precursors
  • Terpenes
  • prelamin A
  • Cholesterol
  • Metalloendopeptidases
  • Zmpste24 protein, mouse