The role of migratory birds in the dispersal of Ixodes scapularis ticks in the northeastern U.S. is well established and is presumed to be a major factor in the expansion of the geographic risk for Lyme disease. Population genetic studies of B. burgdorferi sensu stricto, the agent of Lyme disease in this region, consistently reveal the local presence of as many as 15 distinct strain types as designated by major groups of the ospC surface lipoprotein. Recent evidence suggests such strain diversity is adaptive to the diverse vertebrate hosts that maintain enzootic infection. How this strain diversity is established in emergent areas is unknown. To determine whether similar strain diversity is present in ticks imported by birds, we examined B. burgdorferi strains in I. scapularis ticks removed from migrants at an isolated island site. Tick mid-guts were cultured and isolates underwent DNA amplification with primers targeting ospC. Amplicons were separated by gel electrophoresis and sequenced. One hundred thirty-seven nymphal ticks obtained from 68 birds resulted in 24 isolates of B. burgdorferi representing eight ospC major groups. Bird-derived ticks contain diverse strain types of B. burgdorferi, including strain types associated with invasive Lyme disease. Birds and the ticks that feed on them may introduce a diversity of strains of the agent of Lyme disease to emergent areas.
© 2011 The Society for Vector Ecology.