Many plant species are characterized by a life cycle with a long-lived, subterranean phase that is completely dependent on mycorrhizal fungal symbionts for fixed carbon. This type of life cycle is both phylogenetically and ecologically widespread and is found in diverse vascular plant lineages from the tropics to subalpine meadows. Here we report on the molecular identities of the arbuscular mycorrhizal fungi associated with the autotrophic and underground mycoheterotrophic life cycle phases of the ferns Botrychium crenulatum and B. lanceolatum. We show that the Glomus taxa found in the mycoheterotrophic life cycle phases of B. crenulatum and B. lanceolatum are also found in conspecific and heterospecific photosynthetic neighboring plants. From our DNA sequence data, we infer carbon flow from photosynthetic plants to mycoheterotrophic plants through shared glomalean fungal networks. Finally, our phylogenetic analyses identify a major Glomus clade that forms associations with mycoheterotrophic life cycle stages of B. crenulatum and B. lanceolatum.