Background and aim: The mechanisms of hepatocarcinogenesis induced by hepatitis C virus remain unclear. Our aim was to investigate the effect of the HCV core protein on the promoter methylation status of selected genes potentially involved in the hepatocellular carcinoma (HCC).
Materials and methods: We evaluated the promoter methylation levels of the E-cadherin (CDH1), the glutathione S-transferase p1 (GSTP1), adenomatosis polyposis coli (APC), tissue inhibitor of metalloproteinase 3 (TIMP3), catenin (cadherin-associated protein) beta 1 (CNNTB1) genes by a quantitative methylation-specific polymerase chain reaction (QMSP) in the in vitro model of Huh-7 cells expressing the HCV core protein of genotype 1b.
Results: We found that CDH1 promoter was hypermethylated in genotype 1b HCV core protein-positive cells as compared to control cells expressing the GFP protein alone (HCV core 1b vs GFP p=0.00; HCV core 1b vs Huh-7 p=0.03). This resulted in reduced levels of CDH1 protein as evaluated by immunoblot and by immunofluorescence. On the other hand no significant changes were observed for the other genes investigated. Furthermore, we present evidence that genotype 1b HCV core protein expression induces SIRT1 upregulation and that treatment with SIRT1 inhibitor sirtinol decreases the methylation levels of CDH1 promoter (1b+sirtinol vs 1b p=0.05; 1b+sirtinol vs GFP+sirtinol p=NS) resulting in 1.7-fold increased CDH1 mRNA expression (1b+sirtinol vs 1b p=0.05).
Conclusions: Our findings suggest that HCV core protein could play a role in HCC at least in part by altering the methylation status of CDH1 promoter. These findings could also suggest a novel therapeutic approach for HCC.
Copyright © 2011 Elsevier B.V. All rights reserved.