The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts

J Cell Physiol. 2011 Sep;226(9):2235-43. doi: 10.1002/jcp.22559.

Abstract

The response of transverse (T)-tubules to exercise training in health and disease remains unclear. Therefore, we studied the effect of exercise training on the density and spacing of left ventricle cardiomyocyte T-tubules in normal and remodeled hearts that associate with detubulation, by confocal laser scanning microscopy. First, exercise training in normal rats increased cardiomyocyte volume by 16% (P < 0.01), with preserved T-tubule density. Thus, the T-tubules adapted to the physiologic hypertrophy. Next, we studied T-tubules in a rat model of metabolic syndrome with pressure overload-induced concentric left ventricle hypertrophy, evidenced by 15% (P < 0.01) increased cardiomyocyte size. These rats had only 85% (P < 0.01) of the T-tubule density of control rats. Exercise training further increased cardiomyocyte volume by 8% (P < 0.01); half to that in control rats, but the T-tubule density remained unchanged. Finally, post-myocardial infarction heart failure induced severe cardiac pathology, with a 70% (P < 0.01) increased cardiomyocyte volume that included both eccentric and concentric hypertrophy and 55% (P < 0.01) reduced T-tubule density. Exercise training reversed 50% (P < 0.01) of the pathologic hypertrophy, whereas the T-tubule density increased by 40% (P < 0.05) compared to sedentary heart failure, but remained at 60% of normal hearts (P < 0.01). Physiologic hypertrophy associated with conserved T-tubule spacing (~1.8-1.9 µm), whereas in pathologic hypertrophy, T-tubules appeared disorganized without regular spacing. In conclusion, cardiomyocytes maintain the relative T-tubule density during physiologic hypertrophy and after mild concentric pathologic hypertrophy, whereas after severe pathologic remodeling with a substantial loss of T-tubules; exercise training reverses the remodeling and partly corrects the T-tubule density.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Shape
  • Cell Surface Extensions / pathology*
  • Fourier Analysis
  • Heart Failure / complications
  • Heart Failure / pathology
  • Heart Failure / physiopathology
  • Heart Function Tests
  • Hypertrophy, Left Ventricular / complications
  • Hypertrophy, Left Ventricular / pathology
  • Hypertrophy, Left Ventricular / physiopathology
  • Myocardial Infarction / complications
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology
  • Myocardium / pathology*
  • Myocytes, Cardiac / pathology
  • Oxygen Consumption
  • Physical Conditioning, Animal*
  • Rats
  • Ventricular Remodeling / physiology*