Two Drosophila myosin transducer mutants with distinct cardiomyopathies have divergent ADP and actin affinities

J Biol Chem. 2011 Aug 12;286(32):28435-43. doi: 10.1074/jbc.M111.258228. Epub 2011 Jun 16.

Abstract

Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1(A261T) and S1(G200D)) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1(A261T) is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin · S1), and reduced ATP-induced dissociation of actin · S1), whereas S1(G200D) shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin · S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1(A261T) (dilated) and S1(G200D) (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1(A261T) weakens the affinity of S1 · ADP for actin, whereas S1(G200D) increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up(2) mutation in Drosophila.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins* / genetics
  • Actins* / metabolism
  • Actomyosin / genetics
  • Actomyosin / metabolism
  • Adenosine Diphosphate / metabolism*
  • Animals
  • Cardiomyopathy, Restrictive* / genetics
  • Cardiomyopathy, Restrictive* / metabolism
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster
  • Humans
  • Models, Cardiovascular*
  • Muscles / metabolism
  • Myosin Type II* / genetics
  • Myosin Type II* / metabolism
  • Phenotype
  • Point Mutation*
  • Troponin I / genetics
  • Troponin I / metabolism

Substances

  • Actins
  • Drosophila Proteins
  • Troponin I
  • Adenosine Diphosphate
  • Actomyosin
  • Myosin Type II