The accumulation of anthocyanin pigments is one of the most important traits that turn strawberry fruit attractive to consumers. During ripening, strawberry fruit color development is associated to anthocyanin synthesis through the phenylpropanoid pathway. Phenylalanine ammonia-lyase (PAL) is a key enzyme in this pathway, having a determining role in strawberry fruit quality. In this work, we studied the level of anthocyanins during fruit ripening of two cultivars that differ in color development (Camarosa and Toyonoka). Toyonoka showed a lower anthocyanin accumulation that was limited to external fruit tissue, while Camarosa accumulated higher amount of anthocyanins in both internal and external sections. In addition, we cloned a full-length gene (FaPAL6) and analyzed its expression in different strawberry plant tissues. The expression of this gene is fruit specific, and increases during fruit ripening in both cultivars along with anthocyanin accumulation. The mRNA level of FaPAL6 was higher in Camarosa. PAL enzyme activity increased at similar rates in both cultivars at early ripening stages, but at the end of ripening PAL activity diminished in Toyonoka while it rose markedly in Camarosa. PAL activity was higher in internal fruit tissue, showing no correlation with anthocyanin level of the same section in both cultivars. The higher FaPAL6 expression and activity detected in Camarosa could be associated to the enhanced anthocyanin accumulation found in this cultivar.
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.