Although much is known about interleukin (IL)-1β and its role as a key mediator of cartilage destruction in osteoarthritis, only limited information is available on IL-1β signaling in chondrocyte dedifferentiation. Here, we have characterized the molecular mechanisms leading to the dedifferentiation of primary cultured articular chondrocytes by IL-1β treatment. IL-1β or lipopolysaccharide, but not phorbol 12-myristate 13-acetate, retinoic acid, or epidermal growth factor, induced nicotinamide phosphoribosyltransferase (NAMPT) expression, showing the association of inflammatory cytokines with NAMPT regulation. SIRT1, in turn, was activated NAMPT-dependently, without any alteration in the expression level. Activation or inhibition of SIRT1 oppositevely regulates IL-1β-mediated chondrocyte dedifferentiation, suggesting this protein as a key regulator of chondrocytes phenotype. SIRT1 activation promotes induction of ERK and p38 kinase activities, but not JNK, in response to IL-1β. Subsequently, ERK and p38 kinase activated by SIRT1 also induce SIRT1 activation, forming a positive feedback loop to sustain downstream signaling of these kinases. Moreover, we found that the SIRT1-ERK complex, but not SIRT1-p38, is engaged in IL-1β-induced chondrocyte dedifferentiation via a Sox-9-mediated mechanism. JNK is activated by IL-1β and modulates dedifferentiation of chondrocytes, but this pathway is independent on NAMPT-SIRT1 signaling. Based on these findings, we propose that IL-1β induces dedifferentiation of articular chondrocytes by up-regulation of SIRT1 activity enhanced by both NAMPT and ERK signaling.