Knowledge about skin penetration of nano- and microparticles is essential for the development of particle-core drug delivery systems and toxicology. A large number of studies have been devoted to metallic particle penetration. However, little work has been published about the importance of chemical material properties of the particles and the skin penetration effect of the applied formulation. Here, we investigated the penetration of 3 microm silica particles in water and in a 65% ethanolic plant extract on ex vivo human skin using scanning electron microscopy. Contrary to most other microsphere skin studies, we observed for the first time that 3 microm silica particles can penetrate the living epidermis. Moreover, when formulated in the ethanolic medium, particles even reach the dermis. The deviating chemical properties of silica compared to previously investigated microparticles (titanium dioxide, zinc oxide) and confounding effect of the formulation in which the silica microparticles are presented, is thus demonstrated.