Background & aims: Hepatitis C virus (HCV) infection is characterized by lack of immune-mediated liver injury despite a high level of HCV replication during the incubation phase, which lasts about 8 weeks. We investigated whether this results from delayed recruitment of HCV-specific T cells and whether it facilitates HCV persistence.
Methods: Six chimpanzees were infected with HCV; blood and liver samples were collected for 28 weeks and analyzed for immune cells and chemokines.
Results: Two chimpanzees developed self-limited infections, whereas the remaining 4 developed chronic infections. Levels of the chemokines CXCL10, CXCL11, CCL4, and CCL5 increased in blood and liver samples from all chimpanzees within 1 month of HCV infection. Chemokine induction correlated with intrahepatic type I interferon (IFN) responses in vivo and was blocked by neutralizing antibodies against IFN-β in vitro. Despite the early-stage induction of chemokines, the intrahepatic lymphocytic infiltrate started to increase no earlier than 8 weeks after HCV infection, when HCV-specific, tetramer-positive CD8(+) T cells appeared in the circulation. The HCV-specific CD8(+) T cells expressed chemokine receptors when they were initially detected in blood samples, so they could be recruited to the liver as soon as they entered the circulation.
Conclusions: Chemokines are induced during early stages of HCV infection, which requires a type I IFN-mediated response. The delayed onset of acute hepatitis does not result from delayed recruitment of HCV-specific T cells, but could instead be related to a primary delay in the induction of HCV-specific T cells. Divergent outcomes occur without evident differences in chemokine induction and T-cell recruitment.
Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.