Candida glabrata owes its success as a pathogen, in part, to a large repertoire of adhesins present on the cell surface. Our current knowledge of C. glabrata adhesins and their role in the interaction between host and pathogen is limited to work with only a single family of epithelial adhesins (Epa proteins). Here, we report on the identification and characterization of a family of glycosylphosphatidylinositol-anchored cell wall proteins in C. glabrata. These proteins are absent in both Saccharomyces cerevisiae and Candida albicans, suggesting that C. glabrata has evolved different mechanism(s) for interaction with host cells. In the current study, we present data on the characterization of Pwp7p (PA14 domain containing Wall Protein) and Aed1p (Adherence to Endothelial cells) of this family in the interaction of C. glabrata with human umbilical vein endothelial cells. The deletion of C. glabrata genes PWP7 and AED1 results in a significant reduction in adherence to endothelial cells compared with the wild-type parent. These data indicate that C. glabrata utilizes these proteins for adherence to endothelial cells in vitro.
© 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.